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Abstract Based on advantages of basic non-negative sparse coding (NNSC) model, and
considered the prior class constraint of image features, a novel NNSC model is discussed
here. In this NNSC model, the sparseness criteria is selected as a two-parameter density
estimation model and the dispersion ratio of within-class and between-class is used as the
class constraint. Utilizing this NNSC model, image features can be extracted successfully.
Further, the feature recognition task by using different classifiers can be implemented well.
Simulation results prove that our NNSC model proposed is indeed effective in extracting
image features and recognition task in application.
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1 Introduction

Non-negative sparse coding (NNSC) model was proposed by Hoyer in 2002 [1], which has
been used widely in numerous domains, especially in image processing field [2]. And many
documents published [1–3] have proved that NNSC, like as sparse coding (SC) [2], can
successfully extract image features, denoise images, classify features and so on. However,
Hoyer’s model only considers image reconstruction error and sparse priori distribution of
sparse coefficients in the cost function.And in learning feature basis vectors [3–6], only gradi-
ent projection method is used without considering multiplicative updating factor. Therefore,
its performance is influenced hardly by the iterative step size, and the convergence precision
can not be very high. Otherwise, the prior class information of image features isn’t also
considered in Hoyer’s model, so, when being used to classification task, the high classifi-
cation precision isn’t also be obtained. To solve these faults above-mentationed, considered
prior class constraint and the maximum sparseness, a novel NNSC model is proposed by
us in this paper. In our NNSC model, the class constraint is selected the dispersion ratio of
within-class and between-class of image features’ sparse coefficients, in others words, our
NNSC model is such a model based on dispersion constraint, denoted by DCB-NNSC here.
In our DCB-NNSC model, the sparseness measure criterion is selected as the two-parameter
density model behaving the priori sparse distribution of feature coefficients as described in
document [6]. In the feature extraction task, to improve the feature separability, the disper-
sion ratio of within-class and between-class of feature coefficients is used. Further, using
the PolyU palmprint database to test our DCB-NNSCmodel, simultaneously, compared with
Hoyer’s NNSCmodel in the same experimental condition, simulation results both testify that
it is efficient indeed in image feature extraction and feature recognition task.

2 Dispersion Constraint

Assumed that S = [
s1, s2, . . . , s j , . . . , sM

]
denotes the sparse coefficient matrix, where s j

is the j th column vector ( j = 1, 2, . . . , M). Let Mk (k = 1, 2, 3, . . . ,C) denote the number
of elements of the kth class matrix Sk, S̃ denote the mean matrix of all samples, S̃k denote

the mean matrix of Sk, and
�

Sk denote all the kth class samples. And then the within-class
and between-class dispersion matrix DW and DB are respectively defined as follows [5]:

DW = 1

M

C∑

k=1

∑

S j∈
�
Sk

(
S j − S̃k

)T (
S j − S̃k

)
(1)

DB = 1

M

C∑

k=1

Mk

(
S̃k − S̃

)T (
S̃k − S̃

)
(2)

where S̃k = 1
Mk

Mk∑

i=1
S(k)
i and S̃ = 1

M

M∑

i=1
Si . After DW and DB are computed, the dispersion

constraint is obtained by the following formula [5]:

Dis = ln (DW/DB) (3)

Noted that the smaller DW is, and the larger DB is, the smaller the Dis is, thus, the better
within-class aggregation can be obtained. So, the term of ln (DW/DB) is considered as the
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class constraint in our NNSCmodel, which canmake features trained to be better separability
in implementing feature recognition task.

3 Our NNSC Model

3.1 Hoyer’s NNSC Model

Hoyer’sNNSCmodel combines two algorithms of SC andNon-negativeMatrix Factorization
(NMF) [4], and the cost function is formulated as follows [3,4]:

min J (A,S) = 1

2
‖X − AS‖2 + λ

∑

i j

Si j (4)

subject to X ≥ 0, A ≥ 0, S ≥ 0 and ‖A‖1 = 1 in training. Here X = [x1, x2, . . . , xN ]T

denotes the input matrix with the size of N × L , and each row is an image patch. Matrix A
is the feature basis set with N × M size, and matrix S with the size of M × L represents
sparse coefficients. In training NNSC model, A and S are updated in turn by using the
gradient optimization algorithm and a multiplicative method. The detailed learning process
can be found in the document [3]. However, because of only using the gradient projection
in updating A, the property of Hoyer’s model is influenced hardly by the size of step length,
and its precision can not be high in practice.

3.2 The DCB-NNSC Model

On the basis of Hoyer’s model, to ensure the sparsity of feature coefficients and improve the
feature separability, considered the adaptive-self sparsity of data and class priori knowledge,
a new NNSC model is proposed in this paper and its cost function is defined as follows:

min J (A,S) = 1

2
‖X − AS‖2 + λ1

∑

i

f (si ) + λ2 ln (DW/DB) (5)

where the constraint conditions is still subject toX ≥ 0,A ≥ 0, S ≥ 0 and ‖A‖1 = 1. Vector
si is the i th row vector of matrix S and the symbol 〈·〉 means the mean value operation. The
sparsity measure function f (·) is calculated by − log [p(·)]. Here p(·) is the prior sparse
distribution of feature coefficients, and considered the strong sparse shape, p(·) is defined as
follows for a stochastic vector y [6]:

p(y) = 1

2b

(d + 2) [0.5d (d + 1)](0.5d+1)

[√
0.5d (d + 1) + |y/b|](d+3)

(6)

where parameters d, b > 0, d is a sparsity parameter and b is a scale parameter. Parameters
d and b are estimated according to the following equations [6]:

⎧
⎨

⎩
b =

√
E

{
y2

}

d = 2−k+√
k(k+4)

2k−1

(7)

where parameter k = b2 fy(0)2, and fy(0) is the value of the function f (·) at zero. A and
S are still updated in turn. In the inner loop, A is fixed, S is updated to minimize the object
function J (A,S). And in the external loop, S is fixed, and A is updated. Here, to reduce
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the convergence time, A and S are at first updated by the gradient descent algorithm, and
then they are further updated by using the multiplication factor referred to the document [4].
Combined the partial derivative of the i th row vector ai of A and the multiplication factor
rule, the updating process of ai is deduced as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ai =
[
X (x, y) −

n∑

i=1
ai (x, y) si

]
sTi

a(t+1)
i =

⎛

⎜
⎜
⎜
⎝

a(t)
i

∑

i
xi

s(t)k
∑

k
a(t)i s(t)k

∑

k
s(t)k

⎞

⎟
⎟
⎟
⎠

/∥
∥
∥a(t)

i

∥
∥
∥

(8)

And the updating process of matrix S is written as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∇si = aTi

[
X (x, y) −

n∑

i=1
ai (x, y)si

]
+ λ1 f ′(si ) + 2λ2

[
(si−sk )
DW

− (sk−s̃)
DB

]

s(t+1)
i =

√√√√s(t)k

([
a(t)
i

]T
xi

a(t)
i s(t)

k

) (9)

where f ′(si ) = [− log (p (si ))
]′ is the first-order derivative of f (si ). By using the above

updating methods described in Eq. (9), matrices A and S can be ensured to be positive, at
the same time, the sparse coefficient vectors are guided to approach the true class center of
samples.

4 Experimental Results Analysis and Conclusion

4.1 Feature Basis Extraction

In test, ten images of different individuals were chosen from the Hong Kong Polytechnic
University (PolyU) palmprint image database to learn feature basis vectors of our NNSC
model. This database includes 600 palmprint images pre-processedwith the size of 128×128
from 100 individuals [8]. Each test imagewas randomly sampled 5000 times by using an 8×8
pixel window, and then each image patch was converted to one column vector with the size of
64× 5000, thus, the training matrix X consisting of 10 test images was 64× 50, 000 pixels.
Further, to reduce the calculation, matrix X was in advance centered and whiten by principal
component analysis (PCA) method. Then, using the updating rules defined in Eqs. (8) and
(9) of A and S in turn, the objective function given in Eq. (5) was minimized efficiently. The
64 feature basis vectors of palmprint images learned by our NNSC were shown in Fig. 1.
Meanwhile, in the same condition, the 64 feature bases of Hoyer’s NNSC were shown in
Fig. 2. In Figs. 1 and 2, the white denotes positive pixels, the gray denotes zero pixels, and
the black denotes negative pixels. Clearly, compared Figs. 1 with 2, in each grid, the gray area
in Fig. 2 is larger than that in Fig. 1, namely, the bases of our NNSC behave much sparsity,
which are similar to those of sparse pixels shown in the document [1]. At the same time, it is
clearly to see that Fig. 2 has distincter white and black pixels than Fig. 1. This proves further
that basis vectors of our NNSC model behave clearer locality than Hoyer’s model.
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(a) (b) (c)

Fig. 1 Basis vectors of our NNSC model. a ON-channel basis. b OFF-channel basis. c Bases of ON-channel
minus OFF-channel

(a) (b) (c)

Fig. 2 Basis vectors of basic NNSCmodel. aON-channel basis. bOFF-channel basis. cBases of ON-channel
minus OFFchannel

4.2 Feature Recognition Test

Using feature bases learning by our NNSC algorithm, referring to the ICA frameworkI-
Idescribed in [9], the feature classification task can be implemented. Here, the PolyU
palmprint database was still used. To reduce computation, each image was reprocessed by
wavelet to be the size of 64×64 pixels. Thus, the training sample set with 4096×600 pixels
was obtained. For each person, the first three images were used as training images, and others
were used as testing images. Therefore, the training and test set were the size of 4096× 300.
For the convenience for calculating, PCAwas further used to reduce dimension so as to obtain
an appropriate dimension k. Let Pk (4096× k pixels) denote the matrix containing the first k

principal component (PC) axes in its columns and let
�

X denote the data set with zero-mean

images, then the PC coefficient matrix Rk was represented by Rk = �

XTPk (300× k pixels).
So, for testing set Xtrain with the size of k × 300, the representation of train images was
obtained in the columns of Strain as follows:

Strain = A−1 · RT
train = A−1 ·

(
XT
train · Pk

)T
(10)

where matrix A−1 with the size of 4096 × k is the inverse or pseudo inverse of A. In the
same way, for the test set Xtest , the representation Stest of test images can be obtained.
In recognition task, three types of popular classifiers, Euclidean distance, extreme learning
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Table 1 Recognition rates of
different classifiers

Algorithms
(k = 121)

ELM (%) SVM (%) Euclidean
distance (%)

PCA 96.48 94.75 91.33

DCB-NNSC 97.82 97.64 93.72

Basic NNSC 96.73 96.252 92.68

Table 2 The training time and classification time of different classifiers obtained by different algorithms

Classifiers Our NNSC (s) Basic NNSC (s) PCA (s)

Training Classification Training Classification Training Classification

ELM 0.031 0.015 0.063 0.031 0.078 0.035

SVM 4.827 0.253 5.762 3.527 23.326 12.625

Euclidean
distance

8.524 5.526 18.846 7.836 35.627 16.163

machine (ELM) [9–12] and support vector machine (SVM) [13–15] were used to test features
learned by our NNSC model. The SVM model was first developed by Vapnik for pattern
recognition and function regression [10], and it has been proved to be very successful in
pattern recognition [9,10]. Otherwise, it is also noted that the recognition rate obtained by
SVMmodel has to do with the kernel functions selected [13,14]. Some published documents
have proved that, among SVM kernels used frequently [13–15], the Gaussian radial basis
function kernel and the wavelet kernel behave good recognition effect. ELM can provide
the higher generalization performance at a much faster speed [10,11]. At present, there are
many ELM variations that have been proposed, which have let to the state-of -the-art results
in many applications, especially for the pattern recognition problem [11,12]. Here, we used
the Kernel-based ELM model to implement the classification task.

In test, to determine the optimal feature length to reduce computation time, the PCA
feature recognition with different k dimension was first implemented by three classifiers
mentioned-above. Based on this thought, according to experimental results, k was finally
selected as 121. Thus, used three classifiers, the recognition results of PCA and our DCB-
NNSC features were obtained and listed in Table 1. At the same time, under the same test
condition, the recognition results of Hoyer’s NNSC features were also shown in Table 1. As
well as, in order to compare the recognition speed of different classifiers, the training time
and classification time of each classifier were also listed in Table 2. From Table 1, for DCB-
NNSC features, it is clearly seen that the recognition results obtained by three classifiers
all exceed 93 %. In some extent, it testifies also that DCB-NNSC model is successful in
extracting image features, which are favorable to classify images. Otherwise, it also can see
that no matter what kind of classifiers, the recognition rate of our DCB-NNSC model is the
best, and that of PCA method is the worst. Otherwise, form Table 2, it is clear to see that, the
training time and classification time of ELM classifier are the smallest than those of SVM
and Distance classifiers. Moreover, despite of feature extraction algorithms, the training and
classification time are both less than 1 minute. In other words, the experiment data testify
that the classification speed of ELM is the best, and it behaves the fast classification speed.
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Therefore, according to recognition results, it can be concluded that the DCB-NNSC
model developed by us, like Hoyer’s NNSC model, can model successfully the respective
field of V1 in the primary visual system of human beings, and extract efficiently natural
image features containing prior class information. Further, used in image classification task,
the DCB-NNSC model is better than the basic NNSC model, and this mode is indeed a very
promising in practical applications.
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